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Abstract

In previous work, the determination of uncertainty
models via minimum norm model validation is based
on a single set of input and output measurement
data. Since uncertainty bounds at each frequency is
directionally dependent for multivariable systems, this
will lead to optimistic uncertainty levels. In addition,
the design freedom in the uncertainty model has not
been utilized to further reduce uncertainty levels. The
above issues are addressed by formulating a min-
max problem. An analytical solution to the min-max
problem is given to within a generalized eigenvalue
problem, thus avoiding a direct numerical approach.
This result will lead to less conservative and more
realistic uncertainty models for use in robust control.

1 Introduction

In applying multivariable robust control analysis and
synthesis techniques to linear, time-invariant systems,
as in for example [1], a set of plants as de�ned by a
nominal and uncertainty model are required a priori.
Nominal models are usually associated with a single
\best" model, although what is considered \best" is
debatable. Mathematical models derived from �rst
principles are typically used as nominal models or
sometimes identi�ed from system identi�cation exper-
iments. In some cases where the physical conditions
are not accurately or reliably known due to causes un-
known or when simple models are desirable, it makes
sense to require that the set of plants in question at
least satisfy model validation conditions [2]-[6] with
respect to available input and output measurement
data.

A recently proposed approach [4, 5, 6] to ob-
taining uncertainty models from measurement data is
based on searching for the smallest uncertainty set
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that will validate all available data. The approach
assumes a single set of input and output measurement
data. For multivariable systems, this results in a
particular input direction at each discrete frequency
which in turn leads to optimistic uncertainty bounds.
In addition, the need to admit model validating so-
lutions implys a su�cient degree of freedom in un-
certainty structure selection. This remaining freedom
in a certain null space has not been utilized to reduce
the minimumnorm uncertainty bounds. In this paper,
we investigate both issues. The problem formulation
leads to a min-max problem and the conditions for a
solution is given.

We begin by �rst considering the standard P ��
system shown in �gure 1. Let the overall structured
uncertainty be de�ned by the block diagonal matrices

� = diag(�1; . . . ;�� ); �i 2 Cmi�ni ; i = 1; . . . ; � (1)

and the set of all block diagonal and stable, rational
transfer function matrices be given by

D =
�
�(�) 2 RH1 : �i(so) 2 C

mi�ni; 8so 2 �C+

	
(2)

where � and �C+ denote the number of uncertainty
blocks and the closed right-half plane, respectively [7].
The output error is given by

ey := y � ~y = y � Fu(P;�)u (3)

where the output, input, and upper linear fractional
transformation of (P;�), are denoted by y, u, and
Fu(P;�), and are variables in the z-domain so that
they are complex vectors containing both gain and
phase information.

For model validation [4, 5, 6] with respect to input
and output data u and y, the output error is set to
zero so that from (3)

y � P22u = P21�(I � P11�)�1P12u (4)

Observe from the left hand side of (4) that if the
given nominal model P22 and input cancels the mea-
sured outputs (to within white noise), then � = 0
validates the model. This is the case where a single
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Figure 1: P �� structure in standard form.

\optimal" model can be found such that the output
errors are perfectly uncorrelated to the inputs. In
this ideal case, a single \true" model is available and
robustness issues with respect to model error do not
exist. Otherwise, note that the nominal model error
is directionally dependent on the inputs. Hence, with
a di�erent (directional) choice of inputs, the mininum
norm model validating uncertainty computed will also
be di�erent.

2 Problem Formulation

To address the directional dependence of the mininum
norm model validating uncertainty with respect to
the test input, we assume that nu sets of inputs and
corresponding outputs at each frequency are available
and are arranged in the matrix forms

U := [u1; . . . ; unu] ; Y := [y1; . . . ; ynu] (5)

These sets of inputs and outputs can be formed from
segments of a long identi�cation data or independent
identi�cation experiments. Assuming a linear time-
invariance system, a general input

u = U� (6)

will result in output

y = Y � (7)

so that the error equation for a general input signal is

ey(�;�) = Y ��Fu(P;�)U� (8)

Note that � is a complex coe�cient vector which
help to span the nu dimensional vector space. The
approach for handling the directional dependence is to
search for the largest possible mininum norm model
validating uncertainty over all possible test inputs.

Consider model validating a linear combination
of input/output data set, i.e.,

ey(�;�) = 0; 8� (9)

From (8), this condition is

P21�(I � P11�)�1P12U� = (Y � P22U )�; 8� (10)

Using the earlier approach and making the assump-
tions as given in [4, 5], the � can be unscrambled to
the form

�x = y; 8� (11)

where

x(�; �) := B�+ P11� (12)

y(�; �) := A�+ � (13)

and

A = P+
21(Y � P22U ) (14)

B = P12U + P11P
+
21(Y � P22U ) (15)

� 2 N (P21), where N (�) denotes the null space. The
variables depend on the arguments, � and �, and in
the remaining development, these arguments will not
be explicitly used for simplicity.

To obtain lower bounds on the uncertainty com-
ponents, partition in a conformal manner with respect
to the uncertainty blocks the following:

x = col
�
x1; . . . ; x�

�
; y = col

�
y1; . . . ; y�

�
(16)

Due to the block diagonality of �,

�x = y; 8� , �ixi = yi; 8(i; �) (17)

and in addition

��(�) = max
i

��(�i); 8� (18)

Consider the following Lemmas as given in [4, 5].

Lemma 1:

For each component, xi 6= 0,

��(�i) = k�ik2 �
kyik2
kxik2

; 8(i; �): 2 (19)

Lemma 2:

Let yi 2 Cmi , xi 2 Cni, xi 6= 0; 9�i 2 Cmi�ni :

�ixi = yi; ��(�i) = kyik2
kxik2

: 2

The �rst lemma gives a lower bound on the
maximumsingular value for the ith block diagonal un-
certainty and the input/output data de�ned by �. In
order to model validate the input/output relationship
as de�ned by (17) for a given input vector function, xi,
and an output vector function, yi, the smallest normed
uncertainty is given by the lower bound in Lemma
1. Of course if there are several input/output data
sets (corresponding to di�erent �'s) to model validate,
then the largest lower bound with respect to � is
needed to validate all data given. The second lemma



shows that the ith component uncertainty, �i, can
be chosen to achieve this lower bound. Thus Lemma
2 ensures that a minimum normed uncertainty exists
which will validate the given data. Again, if there are
several input/output data sets the largest bound with
respect to � is necessary.

The problem is summarized in the following min-
max problem:

Problem 1 : max
�

�
min

�2N (P12)
J(�; �) :=

ky(�; �)k2
kx(�; �)k2

�
(20)

The physical interpretations for � and � are clear. The
variable � represents all possible input disturbances
in the system identi�cation experiment whereas the
variable � denotes the remaining freedom in the as-
sumed uncertainty. Obviously, a larger number of un-
certainty components in � will generally give greater
freedom in � as realized by an increased dimension of
the null space, N .

3 Solutions

3.1 General Case

In this section we consider the general min-max prob-
lem de�ned in Problem 1. To avoid dealing with
square roots, we consider the equivalent min-max of
the ratio of norms squared. The problem considered
is given as follows:

max
�

�
min
 

J(�; �( )) :=
kA�+ N k22
kB� +D k22

�
(21)

where

NHA = 0 (22)

NHN = I (23)

D = P11N (24)

The matrixN denotes an orthogonal basis for the null
space N and (22) shows its orthogonality with respect
to the range space of the pseudo-inverse P+

21. The free
parameter  has the same dimension as the null space
and is related to � by

� = N (25)

Let

A := Ar + jAi 2 Cr�n (26)

N := Nr + jNi 2 Cr�m (27)

B := Br + jBi 2 Cs�n (28)

D := Dr + jDi 2 Cs�m (29)

� := �r + j�i 2 Cn�1 (30)

 :=  r + j i 2 Cm�1 (31)

(32)

It can be shown that

kA�+ N k22 = �T ~PT ~P� := a(�;  ) � 0 (33)

kB� +D k22 = �T ~QT ~Q� := b(�;  ) � 0 (34)

where the real column vector variable is

� :=

8>><
>>:

�r
�i
 r
 i

9>>=
>>;

(35)

and

~P =
�

~P1 ~P2
�
=

�
Ar �Ai Nr �Ni
Ai Ar Ni Nr

�
(36)

~Q =
�

~Q1
~Q2

�
=

�
Br �Bi Dr �Di
Bi Br Di Dr

�
(37)

The positive de�niteness of ~QT ~Q is assumed from
a physical argument. Observe that if b = 0 and
a 6= 0, then J , the lower bound on the norm of model
validating uncertainty is unbounded, which is to say
a model validating uncertainty do not exist. Hence
we assume that b > 0 8� 6= 0 so that ~QT ~Q > 0
or equivalently, ~Q has full column rank. The cost
function is then written as

J(�;  ) =
a(�;  )

b(�;  )
� 0 (38)

As �gure 2 illustrates, a solution to the min-max
problem lies at a saddle point. The particular type
of saddle point we seek must possess the following
properties: it should be stationary with respect to �,
local maximumwith respect to �, and local minimum
with respect to  . Speci�cally,

α

ψ

J(    )α ψ,

ψψJ > 0

Jαα < 0

.

Figure 2: Geometry of a min-max solution: saddle
point.
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and

@
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�
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By taking partial derivatives, it can be shown that the
stationary condition reduce to

[ ~PT ~P � J ~QT ~Q]� = 0 (42)

It can also be shown that the local maximum and
minimum conditions reduce to the sign de�niteness
conditions

~PT1 ~P1 � J ~QT1 ~Q1 < 0 (43)
~PT2 ~P2 � J ~QT2 ~Q2 > 0 (44)

Finally, it follows that the above negative and positive
de�niteness conditions in (43) and (44) respectively, is
equivalent to the condition

��( ~P1L
�T
1 ) < J < �( ~P2L

�T
2 ) (45)

where Li are square, nonsingular matrices derived
from the singular value decompositions of ~Qi [8], i.e,

~Qi = Ui�iV
T
i Li = Vi�i; i = 1; 2: (46)

Note that ~Q1, and ~Q2 will have full column rank
matrices since ~Q was earlier assumed to have full
column rank on physical grounds. To recapitulate,
the min-max problem de�ned by Problem 1 reduces
to �nding � and  , such that J is stationary with
respect to both � and  , i.e., the equality (42) holds,
and the curvature of J with respect to � is negative
and is positive with respect to  , i.e., the inequality
(45) holds.

To satisfy the conditions de�ned in (42) and (45),
�rst note that both J and � are unknowns in (42) so
that this equation can be treated as a real, symmetric
generalized eigenvalue problem. The functional de-
pendence of both a and b and hence J on � is not
constraining as evident from premultiplying (42) by
�T and solving for J . Hence a simple and direct solu-
tion algorithm follows. First, �nd all stationary points
by solving for all the eigenvalues and corresponding
eigenvectors for the eigenvalue problem in (42)

Jk :=
�a
b

�
k
; �k =

8>><
>>:

�kr
�ki
 kr
 ki

9>>=
>>;
; (47)

where k = 1; . . . ; 2(nu + dim(N )). Second, check to
see if any of the �k's lie within the inequality bound
(45). The results are summarized in the following:

Proposition 1:

Let Jk, �k be the eigenpair of (42). Then the
eigenpair is a solution to the min-max problem in
(20) only if Jk satisfy the inequalities (45). 2

If more than one eigenvalue lie within the inequal-
ity bound given in (45), this indicates that there is
more than one saddle point and the smallest eigen-
value should be chosen since the square root of these
eigenvalues directly correspond to uncertainty lower
bounds. From a computational standpoint, the real,
symmetric generalized eigenvalue problem that needs
to be solved is of dimension 2(nu+dim(N )), which will
not likely be a problem for most practical applications.

3.2 Special Case, � = 0

Consider the special case of � = 0 or when N (P21) =
f0g. The mini-max problem reduces to the single
optimization problem:

Problem 2 : max
�

J(�; 0) :=
ky(�; 0)k2
kx(�; 0)k2

=
kA�k2
kB�k2

(48)

Since � must be �nite in satisfying the model vali-
dation condition (9) for all nonzero �, BHB must be
positive de�nite. With the nonsingular (and hence
unique) coordinate transformation

LT� = � (49)

the optimization problem reduces to

max
�

J(�; 0) = max
�

kA�k2
kB�k2

(50)

= max
�

kAL�T�k2
k�k2

(51)

= ��(AL�T ) (52)

The above development is summarized in the follow-
ing.

Proposition 2:

The largest lower bound of the uncertainty with
respect to all possible linear combinations of a set
of nu input/output data is given as

��(�) � J(��; 0) = ��(AL�T ): 2 (53)

Consider the special case where a speci�c lower
bound is used instead of any linear combination. For
example, let �j denote the jth column of an nu by
nu identify matrix. Then the jth input vector corre-
sponds to � = �j so that



uj = U�j ; yj = Y �j (54)

From (49) the corresponding � is

�j = LT �j (55)

so that from Proposition 2

ky(�j ; 0)k2
kx(�j; 0)k2

=
kAL�T �jk2

k�jk2
� ��(AL�T ) � ��(�);

8 j = 1; . . . ; nu (56)

The expression on the left hand side of (56) denotes
an uncertainty bound based on a single input/output
data and is given in the earler works [4, 5].

3.3 Structured Uncertainty

To compute norm bounds for unstructured uncer-
tainty, the maximum singular value in (53) or the
eigenvalues in (47) need to be computed for general
and special case respectively. However, for structured
uncertainty case, eigenvector �k and the maximizing
principal vector �� is needed to compute individual
component uncertainty bounds for the general and
special case respectively.

For the special case, the norm bound on the ith
component uncertainty is given from (19) as

��(�i) �
k[AL�T ��]ik2

k��ik2
(57)

The superscript i in the right hand side of (57) de-
notes the ith component of the column vectors. The
principal vector, ��, comes from the singular value
decomposition

AL�T = P � diag
�
��(AL�T ); . . .

�
�
�
��; . . .

�T
(58)

Similarly, for the general case, the norm bound on the
ith component uncertainty is also given from (19) as

��(�i) �
kyi(�k; �( k))k2
kxi(�k; �( k))k2

(59)

where the subscript k in (59) denotes the smallest
eigenpair solution that satis�es the min-max inequal-
ity bounds.

4 Conclusion

The issue of directional dependence of multivariable
uncertainty models is addressed along with the uncer-
tainty design freedom beyond model validation. The
problem is formulated as a search for a saddle point
in a �nite dimensional, complex space. Numerical
and experimental validation and applications of the
proposed solution is underway. It is expected that
these results will lead to less conservative and more
realistic uncertainty models for use in robust control.
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